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Two-dimensional flow past a cylindrical body of arbitrary profile at small Reynolds 
numbers is studied theoretically. The asymptotic flow field a t  large distances from 
an immersed body is shown to depend only upon the force acting on the cylinder. 
This universal field is determined by solving the Navier-Stokes equation numerically. 
The result enables us to evaluate the force acting on the body as a function of the 
flow Reynolds number. A detailed calculation is made of the drag coefficients of a 
circular cylinder and a flat plate. Results compare favourably with existing 
experimental and numerical data. 

1. Introduction 
Viscous forces are dominant over inertial forces near a body placed in an otherwise 

uniform flow when the Reynolds number of the flow is small. Total neglect of the 
inertial forces, however, causes some contradiction, since inertial forces become 
comparable with viscous forces at large distances from the immersed body. In the 
two-dimensional case, the Stokes approximation neglecting inertial effects leads to 
logarithmic divergence of the flow velocity at  infinity. Oseen (1910) proposed a 
method to remove this difficulty by retaining the inertial terms in% linearized form, 
and Lamb (1911) obtained a reasonable result for a circular cylinder by solving 
Oseen’s equation approximately. 

Important contributions were made by Kaplun (1957) and Proudman & Pearson 
(1957) by applying the singular-perturbation method to the full Navier-Stokes 
equation. They distinguished the Stokes region around the body, where viscous forces 
are dominant, from the Oseen region, where inertial forces are comparable with 
viscous forces. Approximate solutions in respective regions were so determined that 
they match with each other in an intermediate region. The result was expressed in 
a power series essentially in llnRl-l, where R is the Reynolds number. Kaplun 
advanced his calculation up to Iln RI-2. In addition, Lamb’s drag formula was found 
to be correct to JlnRJ-’. 

We may consider the situation in which JlnR1-l is not small while R is still small. 
In this case, all the successive terms in Kaplun’s expansion are of the same order, 
and his assumption that the deviation from the uniform flow is small in the Oseen 
region does not hold. Thus the flow outside the Stokes region should obey the full 
Navier-Stokes equation instead of the Oseen equation. In the present paper, we 

15-2 



446 K .  Tarnada, H .  Miura and T. Miyagi 

analyse such a case in order to get better results in a wider range of the 
Reynolds number than in Kaplun's analysis. 

2. Analytical considerations 
The motion of a viscous fluid obeys the equation of continuity and the Navier-Stokes 

equation. These equations for the steady two-dimensional flow past a cylindrical body 
may be written in terms of dimensionless variables as 

au av 
ax ay - + - = o ,  

Here (x, y) are Cartesian coordinates and (u, v) the velocity components, each 
normalized by a characteristic length L of the body and the undisturbed velocity U 
respectively. Also, ŵ  is the dimensionless vorticity and R the Reynolds number based 
on L and U .  The uniform flow is in the x-direction. 

In the neighbourhood of the body where r = (x2+y2)i = 0(1), the inertial terms 
can be neglected for small R, and (2) reduces to the Stokes equation 

(& + &)& = 0. (3) 

Since the body shrinks to a point in a large-scale view, the solution of (3) satisfying 
the no-slip condition on the body surface takes a universal form known as a Stokeslet 
at  large r .  Thus the complex velocity takes the form (Tamada 1957) 

u-iv - 2x1nr-Ae-2is+~ ( r  %- l ) ,  (4) 

where B = tan-' (y/x) and A and 7 are certain constants, 3 being the complex 
conjugate of A .  The constant A is connected with the force per unit length acting 
on the cylinder as follows: 

F,+iF, = SxyUA, 

where (F,, F!) are the (x, y)-components of the force, and y is the viscosity coefficient. 
Another constant 7 depends on A and 

(5) 

linearly as 

7 = AA+BX, (Gal - 
where A and B are related to the geometric properties of the cylinder. In the case 
of an elliptic cylinder, for example, we have (see the appendix; Hasimoto 1953; Imai 
1954; Tamada 1957) 

(6b)  
1-8 . A = -.--@a , 
1 S S  

B = -2ln{t(1+8)}, 

where the major axis is taken as the characteristic length of the cylinder, 8 is the ratio 
of minor to major axis and 01 is the angle between the major and x-axes. 

Viscous forces become so small in the far field of r = O(R-l) as to be comparable 
with inertial forces. To describe the fluid motion in this outer region, we use shrunk 
coordinates defined as 

2 = Rx, ij = Ry. (7) 
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Then (1) and (2) are transformed into forms free from R: 

au au -++ ,=o ,  
a2 ay 

av au 
(u& +v&) 0" = (& + &) &, 0" = az - - - ag , (9) 

The flow in the outer region where r" = (9 + gz ) i  = O( 1) is thus governed by the full 
Navier-Stokes equation. The solution for the outer region should match with the 
previous solution for the Stokes region in an overlap domain of validity where 
R << r" 4 1. Another condition is that the flow approaches the uniform flow at infinity. 
Thus the outer solution can be obtained by solving (8) and (9) subject to the following 
boundary conditions : 

u-iv - 2Xlnr"-~e-2iO+constant as T + O ,  (10) 

u-iu+l as r"+co, (11) 

where A is the force coefficient (cf. (4), (5) ) .  These conditions mean that the outer 
solution represents the flow induced by a Stokeslet singularity placed at a point in 
a uniform flow. It depends only upon the intensity of the singularity or A and 1. 
Once this solution is found, we may have its expansion form for r" 4 1 such as 

u-iw = 2~1nr"-Aee-2ie+K+O[r"(lnr")2]. (12) 

Here the constant K ,  a complex quantity in general, is a universal function of A ,  2 
and will take a major role in the present study. Now, if we rewrite (4) in terms of 
(7), the resulting expression should agree with (12) by the matching principle. Thus 
we have the relation 

7 - K  
R = exp- (13) 2A . 

Inserting 7 and K (both known functions of A and 2) into (13) and solving for A as 
a function of R, we can obtain the force acting on the cylinder from (5 ) .  

In the case when 11nRl-l is small, the outer solution can be constructed 
analytically by successive approximation of the Oseen type as mentioned earlier. Its 
first approximation is seen to be a fundamental solution of the Oseen equation 
(Oseenlet) responsible for the force ( 5 ) ,  i.e. 

u - iv = 1 - 2 exp (42) {ZK,(&?) + AKl(&r") e -y  + 4AP1 e-iB, (14) 

where KO and Kl are modified Bessel functions. If we expand this for r"4 1 and 
compare the result with (12), we get the first approximation to K ( A , Z )  as 

K =  l-A-2(ln4-y)], (15) 

where y = 0.57721 ... is Euler's constant. In the case when the cylinder under 
consideration experiences no lift force, A is real and (15) becomes 

K = 1-2(ln4-y++)A. (16) 

The solution (14) is correct to O(A) .  It can be shown that (16) leads to Lamb's (191 1 )  
drag formula for a circular cylinder. We may proceed to higher approximations by 
assuming the solution in a power series in A and 1. Kaplun's (1957) analysis 
corresponds to the approximation correct to O ( A z ) .  Further progress along this line 
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is, however, very difficult, if not impossible. We then appeal in the present study to 
numerical procedures in solving (8) and (9) under the conditions (10) and (1  1). This 
approach may enable us to obtain the universal outer solution and hence the function 
K(A,  z), which are exact within the accuracy of the numerical method used. 

3. Numerical calculation 
We restrict our numerical analysis to a simple case when the cross-section of the 

cylinder is symmetric with respect to the x-axis. All of A ,  r and K are real in this 
case. 

The stream function $ for the deviation from the uniform flow is introduced as 

It is suitable to use modified polar coordinates (&8) for numerical calculation 
of the flow field for small r", where 5 = In?. 

The Navier-Stokes equation (9) is written in terms of these variables as 

(18) 

The inner boundary condition (10) or (12) takes the form 

where 
w - 2e-csin8, $ - (-5+K)eCsin8 as [+-a, (20) 

l - K  
K = -  + 8. 

2A 

The condition for the flow symmetry is given by 

0 = $ = o (e = o,x) .  (22) 

We apply the successive over-relaxation method (cf. Roache 1976) to solve (19). 
The numerical procedure is expressed by the finite-difference formulae to second- 
order accuracy as 

(Jn+1) = 
aj 47) +P[wi+i,j + ~ 1 . j  + wi, j+i + wi,j-i  -4wij 

where 

(24b) 

the superscript n refers to the values at the nth iteration, ( i j )  refer to the grid point 
on the (6 ,  @-plane and h is the grid scale. To ensure numerical convergence, we have 
chosen the over-relaxation factors P and /3' as 

c B -1 - 2 8  5 hsine-~A($i+l,j-$i-l,j), 

/3 = 0.9{2+2t((CSI+IC,I)}-', p' = 0.45. (25) 
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The condition (20) for $ as t+ - rn may be changed into a form free from the 
unknown K : 

Using this formula, we can calculate $ at a computational boundary 5 = go (say) as 
follows : 

Once we get the converged solution for a given A after iterations, K can be found 
through the formula 

$(to, 0 )  = e-2h $(Eo + 2h, e) +%eta sin 8. (27 ) 

K = - e - t  x J)(50.8)sinede+5,. (28 ) 

This method of determining K is more effective than the method of trial and error 
using (20) as it is. 

The use of polar coordinates is inadequate for numerical treatment of the flow 
at large r" because the vortical wake is confined to a narrow strip along 8 = 0. Finer 
grid scales for 0 are required at larger r" to describe the flow change correctly, which 
may produce much complication in the numerical calculation. Appropriate coordinates 
for the vortical region at large r" may be the parabolic coordinates (5, a), where 

5 = (?+2)#, q = (r"-Z)f. (29) 

The Navier-Stokes equation (9) is transformed with (17) and (29) into 

Instead of the boundary condition (1 1) at infinity, we actually use the asymptotic 
formulae obtained by Imai (1951) : 

w - ~ M c - 2 q  exp ( - +q2)  

-2hAg-3[x4(l - q 2 )  exp(-h2)erf(2+ q)-sqexp(--)72)], (31a) 

$ - 2nerf(267)-4tan-' ([-1q)+6xbf5-1 [2f(erf(q)- l} 

- exp ( -h2) erf (2-4q)l + 8nblg(c + q2) - ' .  (31 b)  

Use of (31) permits us to put the computational boundary 6 = or q = qco 
corresponding to infinity at distances nearer the origin (Takami & Keller 1969). Also, 
(31) implies that the vorticity becomes small exponentially as 7 increases. For 
computational efficiency, we put w = 0 in the region where q is greater than some 
value q* and solve only the Laplace equation for $ there. 

With reference to the asymptotic formulae (31), we have performed practical 
calculations with the independent variables defined as 

q' = t In r" (q  2 q*), (324 

in order to retain the accuracy to second order. We compute w and $ according to 
the formula (23) for E0 < 5 < 5, (say) and to similar formulae for the equations 
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resulting with the coordinates (32)  in the domain where c+q2 > 2exp(g,), 
0 < f; < f;, and 0 < q < ?jm. A computational problem is how to calculate w and @ 
a t  E = c*, where (23)  contains the unspecified terms, i.e. w((*  + h, 0) and @(& + h, 0 ) .  
We have to give them correctly to O(h3) so that (23)  may represent (19) to second-order 
accuracy. Let ( i , j )  denote the grid point on the (t, fl-plane which stands close to the 
point corresponding to (.& + h, 0) and (At ,  Af l  be the increments between the two 
points. Taylor expansion at the point ( i , j )  yields 

where q stands for w or $. The derivatives on the right-hand side can be calculated 
as 

(34a)  

(34b) 

( 3 4 4  

q&f = 6-3(qi+3, j - 3qi+z,j + 3qr+l,j -!lij), 

q l =  ( S k i  (2qi+3, j-9qi+2, j + 18qt+i, j - lqtj), 

q&j = (&")-' (Qr+2,j+l-qPi+2,j-2Pi+l,j+l+2Pi+l, i+qr,~+l-qij) ,  ( 3 4 4  

9fTj = (26&)-' ( -qi+z,j+i + ~r+z,j-qi+i, j+z + 6qi+l, j + 1 -  5qi+1, j + qr, j+2  

etc., ( 3 4 4  

where (6, &) are the grid scales for (C, f l  respectively. Computing w and $ a t  the grid 
points just outside 6 + ?j2 = 2 exp (5.) on the (t, fl-plane, we can give the unspecified 
terms in a similar way using the values specified at the grid points on the (6, @-plane. 

We have chosen to = -2n, 5, = *, q, x 4.0,  ?j, x 30 and f;, x 30 in the present 
calculation and iterated to compute w and $ from [ = to to 6 = k * ,  from f; = 0 to 
f; = f;, and in the opposite direction. Convergence was assumed when I K ( ~ ) - K ( ~ - ~ ) ~  
became less than 3 x 

qfi  = - qi+s, j + 4qi+2, j - ~ i + l ,  j + 2qij), 

- 5qi, j+l + 4 q d  

The grid scales are taken as 

1 
m 

= -{2texp($&)+exp(5,)}, k' = -+ln{1-6&(q,+h12,)-1}, 

where m is an integer and k' is the grid scale for 7'. The result for m = 12, 16 over 
0 < A d 0.5 are shown in table 1. The exact value for A = 0 can be found from Lamb's 

(35)  
(16) with ( 2 1 )  

K(0) = ln4--y+l x 1.809. 

Our numerical results may contain errors O(h2).  It appears that the deviation of our 
results for A = 0 from the exact value is almost proportional to h2. This was confirmed 
by another result of ~ ( 0 )  = 1.930 for m = 20. Therefore we get the final results 

(36) 
by extrapolation as 

K = 3 [ 1 6 ~ ( m  = 1 6 ) - 9 ~ ( m  = 12)]. 

Variation of K with A is shown in figure 1 together with the results of Lamb and of 
Kaplun. It can be seen that Kaplun's result deviates from the present result for 
A > 0.15. 
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A 

0 
0.05 
0.1 
0.15 
0.2 
0.25 
0.3 
0.35 
0.4 
0.45 
0.5 

K(m = 12) ~ ( m  = 16) K(extrapo1ated) 

2.117 1.989 1.824 
2.217 2.084 1.913 
2.324 2.187 2.01 1 
2.436 2.294 2.111 
2.553 2.406 2.217 
2.671 2.519 2.324 
2.781 2.625 2.424 
2.871 2.713 2.510 
2.924 2.767 2.565 
2.929 2.777 2.582 
2.887 2.742 2.556 

TABLE 1. Numerical results for K(A)  

2.5 

K 

2.c 

I I I 

I 
I 
I 
I 
I 

I I I 1 

A 
0 0.1 0.2 0.3 0.4 

FIQURE 1.  Variation of K with A :  -, present result; ---, Lamb (1911); ---, Kaplun (1957). 

4. Comparison of theoretical and experimental results for drag coefficients 
The drag coefficient C, is expressed from (5)  in terms of A and the Reynolds number 

as 

where p is the fluid density. Using the universal function K(A) ,  we can represent the 
Reynolds number as a function of A through (13) and (21), if the cross-section of the 
cylinder is specified. As a result, we can find the relation between C, and R with A 
as a parameter. 

In the case of a circular cylinder, we have 7 = (2 In 2) A on putting S = 1 in (6). 
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FIGURE 2. Variation of drag coefficient with Reynolds number for a circular cylinder: -, 
result;---,Lamb (1911);---,Kaplun(1957); V, Jayaweera&Mason(1965); O,Huner& 
(1977); 0 ,  Schlamp et al. (1975). 

present 
Hussey 

The variation of C, with R for a circular cylinder is shown in figure 2. The analytical 
results of Lamb (191 1) and Kaplun (1957), numerical results of Schlamp, Pruppacher 
& Hamielec (1975) and experimental results of Jayaweera & Mason (1965) and Huner 
& Hussey (1977) are also shown for comparison. The present result agrees quite well 
with the experimental results for R < 5.  On the other hand, the results of Lamb and 
of Kaplun are valid over more restricted range of R than the present one. 

The case of a flat plate is considered next, for which S = O  in (6). We have 
7 = (2 ln4f 1)  A for a flat plate placed tangential or normal to the uniform stream, 
respectively. Figure 3 shows the variations of C, with R in these cases. The present 
result for a tangential flat plate agrees well with the numerical results of Dennis & 
Dunwoody (1966) and the experimental results of Schaaf & Sherman (1954) for 
R < 10. Close agreement between the present result and the experimental results of 
Coudeville, Trepaud & Brun (1965) is also seen in the case of a normal flat plate. These 
experiments for a flat plate were performed using a gas of low density, and we have 
picked up only the data that contained negligible effects of rarefaction. As is seen 
from the figure, the present analysis leads to more accurate results than approximate 
Oseen solutions for a flat plate obtained by Harrison (1923) and Bairstow, Cave & 
Lang (1923). 

I t  may be noted that our method can be applied to the case of any other profile. 
The only quantity that depends on the geometric properties of the body is 7. We can 
express i t  as a function of A and A exactly or approximately as the case may be using 
complex-variable analysis to solve the Stokes equation under no-slip condition at the 
body surface (see the appendix; Tamada 1957; Miura 1971). 
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FIGURE 3. Variation of drag coefficient with Reynolds number for a flat plate: -, present results; 
, Harrison (1923) and Baiwtow et al. (1923); 0, Schaaf & Sherman (1954); 0 ,  Dennis & 

Dunwoody (1966); 0,  Coudeville et al. (1965). 

5. Conclusion 
A universal asymptotic field has been analysed in two-dimensional flow past a 

cylindrical body at  small Reynolds numbers. The universality arises from the fact 
that an immersed body is equivalent to a Stokeslet at large distances. The outer flow 
field is governed by the full Navier-Stokes equation provided that the Reynolds 
number is not very small. With the aid of numerical technique, we could fix the 
asymptotic flow field which matches with the Stokeslet flow at the origin as well as 
the uniform flow at infinity. The result was used to determine the relation of the force 
experienced by the cylinder to the Reynolds number for a cylinder of arbitrary 
cross-section. 

The present result may correspond to Kaplun’s solution when all the terms were 
taken in his expansion formula in [lnR[-l. As a result, close agreement with existing 
data of experiment for drag coefficient was observed in the cases of a circular cylinder 
and a flat plate. The range of validity extends to larger Reynolds numbers than 
Kaplun’s analysis. This is brought about by taking the full Navier-Stokes equation 
in the outer flow field. 

Appendix. Stokes flow past an elliptic cylinder 
We consider an elliptic profile in the z = x+iy plane with its centre a t  z = 0. The 

major axis whose length is normalized to 1 makes an angle a with the x-axis. Use 
is made of a Joukowski mapping 

(A 1) 
1-8 

u = - 
1 +S’ z = f ( l  +S)e-ia(c+a[-l), 

which transforms the profile on to a unit circle in the <-plane. Here 6 is the thickness 
ratio of the ellipse. 
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The complex velocity satisfying the Stokes equation may be expressed as 

df - _  
dz 

u-iv = z- - f ( z ) + g ( z )  

where f(z) and g(z) are arbitrary analytic functions of z ,  andf(2) etc. are conjugate 
complex of f(z)  etc. Appropriate forms off and g for the present problem are (Tamada 
1957) 

f(C) = -AlnC+F(C), (A 3a)  

g(C) = 2 1n C+ T* + G!C), (A 3b) 

where F(4)  and C(C) are regular in 161 2 1 and both vanish as C- tao ,  A is the force 
coefficient defined by (5)  in the main text, and T* iaa constant to be determined below. 
The boundary condition is u-iv = 0 on 161 = 1 (C = C - l ) ,  or 

Substituting (A 3), we have 

Every term on the left-hand side is regular in IC;I 2 1 except for F(5-l). Therefore 
F([-') itself must be regular in 161 2 1 and it is also regular in < 1 by (A 3) ,  so 
that it must be a constant which is seen to be zero since F ( m )  = 0. Thus 

F(5-1) = o or F(C) = 0. (A 6) 

Insertion of this into (A 5 )  yields 

From (A 3) ,  (A 6 ) ,  (A 7) and (A l ) ,  we have 

f(C) = -AlnC, 

If we substitute these results into (A 2), we obtain the complex velocity field around 
the elliptic cylinder as follows : 

When IlJ 9 1 ,  5 - 4eia(l +S)-l z from (A l ) ,  and hence 

u- iv - 2 2  In r -  A e-2ie+ a A  e2ia -2/1 In {t( 1 + 6)). (A 10) 

Comparing this with (4) in the main text, we reach the result (6). 
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